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A variational approach to the study of learning a linearly separable rule by a single-layer perceptron leads to
a gradient descent learning algorithm with exactly the same generalization ability as the Bayes limit calculated
by Opper and Haussler@Phys. Rev. Lett.66, 2677 ~1991!#. This is done by finding, through the Gardner-
Derrida replica method, the student-teacher overlapR as a functional of the algorithm cost function and
maximizing this functional. The resulting cost function is closely related to the optimal cost function derived
for on-line learning.@S1063-651X~96!51507-2#
PACS number~s!: 02.70.2c, 87.10.1e, 02.50.2r, 05.90.1m.

We consider the problem of generalization by a single-
layer perceptron undergoing supervised learning from ex-
amples generated by a teacher network with the same archi-
tecture. There is vast literature on this subject~for reviews,
see @1#!, which ranges from the numerical simulation and
analytical calculation of the generalization error of different
algorithms to the determination of the best possible
~‘‘Bayes’’ ! performance by Opper and Haussler.

The proof that there is a perceptron which actually gives
the Bayes performance was given by Watkin~in @1#!. This
optimal perceptron corresponds to the center of mass in stu-
dent space calculated from the posterior distribution pro-
duced by the Gibbs algorithm. Watkin suggests determining
the optimal perceptron by sampling this distribution by inde-
pendently trainingl→` students.

In this paper we show that there exists a training energy
with a nondegenerate minimum that givesexactly the opti-
mal perceptron. The main idea in obtaining optimal generali-
zation algorithms is to treat the learning problem as a varia-
tional one. This has been previously done in@2#–@6# for on-
line learning, where the examples are used only once and are
thereafter discarded. Here we extend the use of the varia-
tional approach to the off-line learning scenario. The gener-
alization ability is calculated, in general, for any algorithm
with a nondegenerate ground state, using the standard Gard-
ner replica analysis of the space of interactions. The optimi-
zation of such ability determines the algorithm, and the op-
timized ability is exactly the Bayes curve. In performing,
such a general calculation we rely heavily on the streamlined
method of Bouten, Schietse, and Van den Broeck~BSB! @7#.

By numerical optimization inside a limited class of func-
tions, BSB have found a remarkably simple algorithm with a
learning behavior very close to the Bayes curve@7#. Optimi-
zation of the so called relaxation algorithm also approxi-
mates the Bayes limit@8#. However, all these are somewhat
ad hocapproaches and only work in the absence of noise.
The question of the existence of a gradient descent algorithm
that leadsexactly to the optimal performance for everya
remains and we now deal with it.

Let B andJPRN be, respectively, the coupling vector of
the teacher perceptron and that of the student. Let

L5$Sm,sB
m%m51, . . . ,P be the training set composed by input

vectorsSm and output datasB
m5 sgn(B•Sm). We take the

input data to be independent random vectors uniformly dis-
tributed on theN-dimensional sphere. This particular situa-
tion is considered only for the purpose of illustrating the
variational approach, being easily generalized to other distri-
butions. In terms ofR5J•B/iBiiJi , the teacher-student
overlap, which is a self-averaging quantity in the thermody-
namic limit, the average generalization error is a monotonic
functioneg5 (1/p)arccosR @1#.

The process of learning is that of iterative determination
of the coupling vectorJ such that the student is able to
approximate the map defined by the teacher. This can be
achieved by a stochastic minimization of a cost function or
training energy, which leads in a natural way to the intro-
duction of the ideas of statistical mechanics in the space of
interactions@1#.

We write the training energy as a sum over the training
setE(J)5(m51

P V(lm), wherelm[N21/2J•SmsB
m is the ex-

ample stability. The quenched average over the training data
is done by the replica method. As usual, the free energy will
depend, under the assumption of replica symmetry, on the
order parametersq, the typical overlap between different
students, andR, the typical overlap between a student and
the teacher.

The fact that the best possible student is unique permits us
to use the streamlined formalism of BSB@7#, which was
developed to treat the case of nondegenerate ground states.
That is, as b→` then q→1 in such a manner that
x5b(12q) is finite. The free energy can be written as

f52Ex,RH 12R2
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whereE is the extremum function andt[Rt21A12R2t1 .
The procedure for obtaining the overlapR is very simple

@7#. We must look for the functionl0(t,x) that minimizes
E(l)[V(l)1 @(l2t)2/2x# . The extremum conditions for
R andx lead to
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At the minimum ofE(l) we have

l02t5F, F[2x
]V~l!

]l U
l0

. ~4!

Substituting in~2! leads to
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whereF̃ is F in the transformed variablet85A12R2t and
g[e2R2t2/2/H(2Rt). Equations~5! and ~6! lead to
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whereG5F̃/g and ^( )& t[*Dt( ).
The solution of Eq.~7! determines the performance of any

gradient descent algorithm, defined at this point byG, with a
nondegenerate ground state. We have managed to reduce the
problem to a point where the application of the variational
ideas is now trivial. From a Schwartz-like inequality, the
right-hand side of Eq.~7! is found to be maximized when
G does not depend ont. The performance of the resulting
algorithm is then given by the solution of the transcendental
equation:
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H~2Rt!
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Equation ~8! is exactly the Opper and Haussler@1# Bayes
result. Thus the variational method constitutes not only an
alternative and more direct procedure for obtaining the
Bayes curve but will also give the form of the optimal train-
ing energy~see below!. This enables us to study the proper-
ties of the optimal perceptron~stability distribution, classifi-
cation error, etc.! by the standard Gardner method@9#.

By referring to Eqs.~5! and~6! again, it can be found that
G5AG/2p, with G5(12R2)/R2. Then, the optimalF
function is

Fopt5A G

2p

e2 ~1/2! t2/G

H~2t/AG!
. ~9!

The functionFopt @Fig. 1~a!# is the difference between the
prelearning and postlearning stabilities@7#. It has precisely
the form of the modulation function of the optimal algorithm
for on-line learning and it depends on the prelearning stabil-
ity t of the example@2#. The modulation depends on the
order parameterG. As it has been shown in@3# this can be

viewed as a factor dependent of the length of the training set
@G[G(a)# for stationary rules or as performance dependent
@G[tan(peg)# for nonstationary environments. Note that as
it is, the off-line variational calculation does not determine
the value ofx because it plays the role of a simple multipli-
cative constant to the optimal energy, being irrelevant for the
equilibrium properties.

The potentialVopt(l) can be obtained, up to irrelevant
additive and multiplicative constants, by integrating Eq.~4!.
Note thatF(t)1t>0, thusl>0, which, by the way, shows
this to be aconsistentalgorithm. This means thatVopt(l) is
infinite for negative arguments. For positive values ofl use
Eq. ~4! to obtain

Vopt~l!5Vopt~l1!2x21E
t~l1!

t~l!

FoptS 11
dFopt
dt8

Ddt8.
But Fopt is the derivative, with respect tot, of the on-line
optimal energy

Eopt~ t !52G lnH~2t/AG!, ~10!

so the integrand is just a total derivative. Then, the optimal
energy functionVopt(l) is

Vopt~l!5x21$Eopt@ t~l!#2 1
2 F

2@ t~l!#%, ~11!

where the value oft(l) is obtained from Eq.~4!.
Thus, the optimal off-line potentialVopt(l) is not identi-

cal to the optimal on-line energyEopt(t), but is closely re-
lated to it. From the cavity method perspective@7#, the term
F2/2x5(l2t)2/2x appears as an additional energy contribu-
tion, due to the other examples, to the potentialVopt(l). It is
this combined cost energyE5Vopt 1(l2t)2/2x which is
nicely related to the optimal on-line energyEopt(t). We call
Wopt[2]Vopt /]l the modulation function for the optimal
off-line case. The relevant variables in the modulation func-
tions are the ratiost![t/AG and l![l/AG. We also can

FIG. 1. Rescaled on-line modulation functionFopt(t
!)/G1/2

~solid!, on-line energyEopt(t
!)/G ~dot-dashed!, off-line modulation

function Wopt(l
!)/G1/2 ~long-dashed!, and off-line potential

Vopt(l
!)/G ~dashed! for learning~a! without noise,~b! with noise

level x50.05.
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rescale these function by the factorAG in order to make
them independent ofR. The rescaled modulation functions
and learning potentials are shown in Fig. 1~a!.

Concerning the practical implementation of an optimal
algorithm, we note that the dependence on the order param-
eter R, far from being disturbing, turns out to be of high
theoretical importance, as we discuss below and in@9#.

We stress that this work only illustrates, within a simple
but paradigmatic situation, a general method for obtaining
optimal learning curves and optimal cost functions. For each
machine and learning environment~example distribution,
noise distribution, etc.! there exists a corresponding optimal
algorithm, which can be found by the method introduced
here. It is currently being used for determining optimal algo-
rithms for noisy environments@9# and unsupervised learning
situations@10#. We only give the results~see@9#! for learning
in the presence of output noise. Letx be the flip probability;
then the modulation function is changed to

Fopt5~122x!A G

2p

e21/2 t2/G

Ĥ~2t/AG!
, ~12!

where Ĥ(2t/AG)5x1(122x)H(2t/AG). The corre-
sponding Bayes curve is given by
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which agrees with the results of Opper and Haussler@1#.
Wopt andVopt are shown in Fig. 1~b!.

The difference between on-line and off-line can be sum-
marized as follows. Off-line learning is described by a
Langevin equation, i.e., an energy gradient descent process
plus noise, where the energyE5(mV(lm) is defined over
the whole set of examples. On-line learning, on the other
hand, while also being a gradient process, has a cost function
E(tm) that depends only on the latest example.

For optimal learning, we have shown that the two types of
energies, although related, are not the same. The main quali-
tative difference lies in that they depend on different vari-
ablesl and t, the postlearning and prelearning stabilities,
this difference being clarified by the cavity interpretation of
the learning process@7,9#. The optimal on-line energy has
been deduced for several different architectures~boolean
perceptron@2,3#, linear perceptron@5,9#, tree committee ma-
chine @6#, parity machine@11#, and unsupervised learning
@10#!.

The optimal algorithms have a rich structure and present
some properties that turn out to be very interesting when
examined from a biological perspective. Remember that the
perceptron is not only a formal neuron model. It is a general
model for associative learning and causal inference based on

a weighted sum of signals, appearing in different contexts
from information processing by protein networks@12# to
classification tasks in animals including humans~ Rescola-
Wagner models@13# are single-layer perceptrons! and
weighted voting in committees.

As our results indicate, for each environment there is an
optimal way of doing this associative learning that corre-
sponds to a very specificmodulatedHebb mechanism that
evolves along the learning process. The modulation function
depends on a balance of confidence and surprise, that is, the
ratio t!5t/AG: confidence of how well the student expects
to perform in the new example, given its average perfor-
mance as measured by the factorG5tan(peg); surprise as
indicated by the actual student performance on that example,
given by the value of the prelearning stabilityt. It also de-
pends on the type and level of the noise in the examples; see
Fig. 1~b! @6,14#.

The optimal algorithm for each learning situation also
suggests how practical algorithms can be constructed—they
must mimic the properties of the optimal one—and gives a
benchmark curve for their evaluation. For optimality to be
achieved, the cost function must be time dependent@2,15#, or
performance dependent if the rule changes with time@3#.

The fact that the optimal algorithms depend on various
internal and external quantities may appear to be distressing,
since those may not be readily available variables. We do not
see this as a problem but as an inevitable theoretical result
that provides important insights for a learning theory. It in-
dicates that, in order to optimize learning algorithms, there
exists a ‘‘selection pressure’’ for the development of ‘‘mod-
ules’’ which are needed to estimate the unknown but impor-
tant quantities~type and level of noise, performance level,
surprise level, etc.!. These on-line estimators have already
been developed for the perceptron@3,14,16#.

To conclude, the variational approach for determining op-
timal learning curves has been extended to off-line learning.
Minimization of Vopt(l) produces the optimal perceptron.
This training energy is found to be closely related to the
optimal on-line energyEopt(t). The optimal algorithms
present complex and rich mechanisms for modulating the
Hebbian term. It is important to stress that our variational
replica calculation for the optimization of cost functions is
general and can be extended to other distributions of ex-
amples, machines and perhaps even other optimization prob-
lems. The variational approach leads to a scenario where
learning algorithms are not hard wired, but are the object of
a ~second-order! learning process; a scenario where students
learn to learn in an optimal way.

Discussions with Chris Van den Broeck and Mauro
Copelli are gratefully acknowledged. This research was par-
tially supported by CNPq and FAPESP.
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